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Photonic bands, gap maps, and intrinsic losses in
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We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two-
dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of
waveguide modes of an effective homogeneous waveguide. The introduction of the third component into
the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We ex-
amine the dependences of the band gap width and gap edge position on the interlayer dielectric constant
and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses
of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of
the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D
PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous
PhC structure can be utilized to optimize the design.
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Development of ultrasmall optical integrated circuits us-
ing two-dimensional (2D) photonic crystal (PhC) slab is
currently the subject of intense investigation[1−6]. The
initial stage for the formulation of numerical proposals
on a wide variety of PhC structures, such as straight,
sharp-bend, and junction structures has been followed
by the second stage for practical demonstrations in real
optical systems. For example, several research groups
have demonstrated the disorder-induced loss[7,8], side-
wall roughness-induced loss[9], and radiation losses in
the case of finite hole depth and cylindroconical hole
shape[10]. All the works concern the problem of fabri-
cation imperfections in PhCs. It is not surprising that
the imperfection disorders in PhCs are focused on, be-
cause they are inevitable in fabrication. In addition to
fabrication imperfection, another inevitable problem is
oxidization of PhC slabs in air. If a device does not work
in vacuum, the PhC’s “atoms” may slightly change their
properties near the interfaces due to some chemical pro-
cesses. The inner pore’s surface of a macroporous slab
structure inevitably contains oxide interlayer which has
the properties different from the bulk ones. Up to date,
little work has been done about this problem except the
work of Glushko et al.

[11]. However, the structure they
dealt with was ideal 2D PhC which was actually unsuit-
able for practical applications. On the contrary, 2D PhC
slabs can provide sufficient confinement in the vertical
direction because of the index differences, and what is
more, the fabrication of 2D PhC slabs is compatible
with modern planar semiconductor processing technol-
ogy, making them promising for highly dense photonic
integrated circuits. In order to understand the optical
properties of 2D PhC slabs enough, it is therefore neces-
sary to investigate the dependences of the properties of
PhC slabs on various structure parameters including the
parameters of oxide surface layer.

Furthermore, the intentional interlayer of the macrop-
orous structure is widely used[12−15]. For PhC slabs, the
introduction of extra component enlarges our freedom
for fine-tuning the dispersion properties. As a matter of
fact, the fabrication of PhC slab which allows to tune
the photonic band gap edges by an external influence has
been one of the recent investigation directions. There are
many mature technologies which can be used to intro-
duce interlayer into macroporous PhC slabs, for example,
thermal oxidation, oxide etching, and atomic layer depo-
sition (ALD)[16]. Among them, ALD is more promising
because it enables a high degree of control over material
and structural properties, which allows for precise static
tuning of optical properties. With ALD, films can be
grown on the inner pore’s surface of a macroporous slab
with a precision of 0.05 nm[15].

In this letter, we investigate theoretically the three-
component 2D PhC slab for which the 2D PhCs are em-
bedded in a planar waveguide and the third medium with
thickness d is introduced as a ring-shaped intermediate
layer around the hole’s surface, as shown in Fig. 1. The
slab of thickness h with triangular array of air holes of
radius R is suspended in air. The dielectric constants of
the background medium, inside air holes, and intermedi-
ate layer are denoted as εb, εa, and εi, respectively. This
structure is referred to as an air bridge. We define the
lattice constant as a. The light propagating in the hori-
zontal direction is dominated by the photonic band gap
(PBG) and the total internal reflection confines the light
in the vertical direction. In order to provide low optical
radiation loss in PhC slab, a core/clad structure with
a high refractive-index contrast in the vertical direction
is a virtual requirement for strong vertical confinement.
So silicon is often chosen as the core layer due to its
high dielectric constant (ε = 11.7) and the sophisticated
technique for Si slab nanofabrication.
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Fig. 1. Schematic structure of triangular lattice of circular
air holes with intermediate layer in a PhC slab. (a) Slab
waveguide of thickness h patterned with a triangular lattice
of circular air holes with intermediate layer; (b) 2D Brillouin
zone and symmetry points.

For a periodic dielectric constant ε(~r), a Bloch state
for the magnetic field at the nth band and wave vector
~k satisfies the Maxwell equation

c2∇× [ε−1(~r)∇× Hnk(~r)] = ω2
nkHnk(~r), (1)

where ωnk and Hnk(~r) are the eigenfrequencies and eigen-
vectors, respectively. After the insertion of a third com-
ponent, the new dielectric function, eigenfrequencies, and
eigenvectors are denoted as ε̃(~r), ω̃nk, and H̃nk(~r). Ig-
noring the higher order terms, from perturbation theory,
it is easy to obtain from Eq. (1) that

∇× ε−1(~r)∇× δHnk

+∇× [ε̃−1(~r) − ε−1(~r)]∇× Hnk(~r)

∼=
ω̃2

nk − ω2
nk

c2
Hnk +

ω2
nk

c2
δHnk, (2)

where H̃nk = Hnk + δHnk. By some mathematical
strategies[12], we finally obtain

(

ω̃nk

ωnk

)2

− 1 ≈

∫

[ε̃−1(~r) − ε−1(~r)] |Dnk(~r)|2 dr
∫

ε−1(~r) |Dnk(~r)|
2
dr

, (3)

where the integration is over a unit cell, Dnk(~r) is dis-
placement field. ε̃−1(~r) − ε−1(~r) is nonzero, say, δ, only
at the insertion position. In our case, δ < 0, so from
Eq. (3), it can be followed that ω̃nk < ωnk, which in-
dicates that the bands shift downwards. What is more,
according to the electromagnetic variational theorem[1],
the low-frequency modes concentrate their energy in
high ε regions and high-frequency modes concentrate
their energy in low ε regions. The insertion of the third
medium (ε > 1) affects higher-frequency modes more
strongly, which implies that the higher-frequency modes
shift downwards larger than the lower-frequency modes
do.

The perturbative approach above explains a physical
origin of the shift of bands in PhC slabs with interlayers.
However, owing to ignoring the higher-order terms, one
can only obtain approximate results by Eq. (3)[15]. In
this letter, we use the guided-mode expansion (GME)
method to calculate more accurately the electromag-
netic wave propagation through the 2D dielectric lossless
PhC slabs. GME has already been described in detail
before[17,18]. The basis of Fourier expansion we apply
contains 259 vectors of reciprocal lattice and 4 guided
modes of the effective waveguide, which is sufficient for

convergence in calculation of photonic eigenmodes. So
photonic eigenmodes obtained by the present approach
can be considered reliable and accurate.

The 2D triangular lattice PhC slab that we are con-
sidering is depicted in Fig. 1. Compared with general
air-clad waveguides, there are additional interlayers on
the inner pore’s surface. The waveguide is symmetric.

In the symmetric PhC slab, the waveguide modes can
be classified into TE-like modes and TM-like modes.
Only for the TE-like modes, there exits band gap, which
is usually used in PhC devices. For the TM-like modes,
there does not exist band gap in general. So in this
work we only calculate the band gap of TE-like modes.
Figure 2 shows the photonic mode dispersion for the low-
est TE-like gap in the triangular lattice PhC slab with
R = 0.45a, h = 0.45a. The photonic mode dispersion
is represented in dimensionless units, a/2πc for the fre-
quency, and a/π for the wave vector. The shaded region
represents the continuum of TE-like slab modes of the
triangular lattice folded in the Brillouin zone. We can see
from Fig. 2 that compared with the case of no interlayer,
the bands of the PhC slab containing the additional in-
terlayer (εi > 1) shift downwards, which agrees well with
the perturbative approach analysis above. In addition,
it follows from electromagnetic variational theorem that
the higher the band, the larger its frequency shift down-
wards, which results in a narrower band gap. All of these
can be seen from Fig. 2.

We studied the dependence of the shifts of band edges
on the thickness of the interlayer. Figure 3(a) shows the
effect of interlayer of thickness d on the band edges of the

Fig. 2. Photonic bands of PhC slab of R = 0.45a, h = 0.45a,
εa = 1, εb = 12. Dotted lines represent photonic bands with
interlayer of thickness d = 0.02a, εi = 10. Solid lines repre-
sent the photonic bands without interlayer.

Fig. 3. (a) Band edges of the lowest gap as a function of in-
terlayer thickness d. (b) Ratio of the gap width (∆ω) to the
mid-gap frequency (ω) as a function of d. Dotted lines cor-
respond to εi = 2, solid lines correspond to εi = 12, dashed
lines correspond to εi = 24.
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Table 1. Positions of TE-Like Mode Gap Edges for
Different Interlayer Thicknesses, R=0.45a, εi= 4

2D Ideal PhC Slab PhC Slab

d PhC with h = 0.45a with h = 0.3a

λl (µm) λu (µm) λl (µm) λu (µm) λl (µm) λu (µm)

0 1.670 1.025 1.293 0.8300 1.170 0.770

0.01a 1.704 1.036 1.314 0.8361 1.185 0.777

0.02a 1.729 1.049 1.332 0.8464 1.201 0.790

λl represents the gap edge of the lower mode, λu represents
the gap edge of the upper mode.

lowest gap. From Eq. (3), it follows that the gaps edges
shift to lower frequencies with the increase of thickness of
silica interlayer on the surface of the pores. Furthermore,
in the structure with larger interlayer dielectric constant,
the shift of the band edges is larger. From Fig. 3, it is
clear that even the interlayer of the thickness d = 0.01a
can influence the gap edge positions. We estimated quan-
titatively the shift of the gap edge positions for some real
structures with constants a = 0.5 µm, radius R = 0.225
µm, and the interlayer thickness d changing from 0 to 40
nm. Table 1 shows the values of the TE-like gap edges of
PhC slabs with three different thicknesses. In the PhC
slab with the thickness of 0.45a, in comparison with the
case of no interlayer, relative shifts of the band gap edges
have the values of about 1.62% for the interlayer thickness
d = 0.01a and 3.02% for d = 0.02a, the absolute values of
the shifts are over 20 nm. Shift of the gap edges in a 2D
silicon PhC due to Kerr effect achieved in Ref. [19] was
about 30 nm, which is of the same order with the shifts
shown in Table 1. Thus, in some cases, especially for the
structures with small lattice pitch (a < 1 µm), one has to
take the effect of extra oxide layer into consideration for
correction[11]. In addition, we investigated the effect of
oxide interlayer in PhC slab of different thicknesses. In
the case of h = 0.3a, relative shifts of the band gap edges
are near 1.28% for the interlayer thickness d = 0.01a and
2.65% for d = 0.02a that are evidently less than those in
PhC slab of h = 0.45a. The effect of oxide interlayer is
sensitive to the slab thickness. The thicker the slab is,
the more sensitive the effect of oxidized interlayer is.

Figure 3(b) shows the normalized width at the mid-
gap as a function of the interlayer thickness d. The
overall tendency is clearly seen: the normalized width
first monotonously rises to a peak at certain d and then
monotonously decreases with the increase of d. There is
always a thickness range in which the normalized width
is larger than that in the case of without interlayer. It
is noted that at a relatively thicker interlayer (about
> 0.7a), the larger εi is, the smaller the normalized width
is. As a matter of fact, in the PhC slab with thick-
ness 0.45a which does not contain oxide interlayer, the
normalized width reaches its maximum at R = 0.436a.
Due to the appearance of oxide interlayer, the radius of
air holes in the PhC slab reduces, the normalized width
increases, and the peak appears at different R around
0.436a, which depends on the interlayer dielectric con-
stant. The less the dielectric constant of interlayer is,
the bigger radius the peak appears at.

Next, we consider the dependence of the shifts of band
edges on the dielectric constants of the interlayer. In
Fig. 4(a), we present the gap map for the structure with

Fig. 4. (a) Band edges of the lowest gap as a function of di-
electric constant εi of interlayer. (b) Ratio of the gap width
∆ω to the mid-gap frequency ω as a function of εi.

different interlayer dielectric constants for PhC slabs
with R = 0.45a, h = 0.45a, and different interlayer
thicknesses of d = 0.01a, 0.02a, 0.04a, 0.06a, 0.08a. The
increase of effective dielectric constant results in shifts
of the gaps towards lower frequencies, and the thicker
the interlayer is, the lower the band gap edge is. From
Fig. 4(b), we can see that with εi growing, the normalized
width grows at thin interlayer (about < 0.07a) and de-
creases at thick interlayer (> 0.07a). In fact, this agrees
with Fig. 3(b).

In PhC slab systems, a few photonic modes lie be-
low the light line of the cladding material and are truly
guided, which should be lossless in an ideal PhC structure
without imperfections. Whereas those modes lying above
the light line are subject to intrinsic radiation losses due
to the out-of-plane diffraction. The light line problem
represents an intrinsic limit for the application of PC
slabs to integrated photonics. It is therefore important
to quantify the level of intrinsic losses and to know their
dependence on the structure parameters. This is done
by using time-dependent perturbation theory for the
electromagnetic problem[16]. We calculated the intrinsic
losses for several lowest photonic bands, part of which lie
below the light line and can be used as lossless modes.
The results are presented in Table 2 and Fig. 5. From
Figs. 5(a) and (c), we can find that for a certain thick
interlayer, the bands shift downwards with the growing
dielectric constant. Figures 5(b) and (d) show the prop-
agation losses of the second and third bands of PhC slab
with various interlayer dielectric constants. With the
red-shift of photonic bands, the bands cross the light line
in air and become true guided mode, and at the crossing
point frequency the radiation losses approach to zero.
Owing to the insertion of interlayer, the frequency range
of each mode, in which the mode is subject to intrinsic
radiation losses, becomes narrower. The modes in this
frequency range become flatter, which results in a lower
group velocity. It is clear from Table 2 that the radiation
losses generally decrease with the increasing interlayer
dielectric constant. In addition, from Fig. 5(c) we can
find that the third bands of PhC slabs with different
interlayer dielectric constants, near the edge of Brillouin
zone (Γ point), are very flat, which implies a low group
velocity. It is well known that the propagation losses de-
pend on the group velocity strongly and this explains the
fact that in Fig. 5(d), near Γ point, the loss grows rapidly.
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Table 2. Losses of the Lowest Two Bands for
Different Interlayer Dielectric Constants

εi

The Second Band The Third Band

ωc (a/2πc) LM (dB/mm) ωc (a/2πc) LM (dB/mm)

1 0.5989 13.6 − 2.78

5.5 0.5499 5.156 0.6475 0.4104

10 0.5151 3.606 0.6193 0.0539

14.5 0.4859 3.123 0.6030 1.457 × 10−4

ωc is the frequency at the crossing point between photonic
bands and air-cladding light line, LM represents the maximum
loss over the frequency range, in which modes are subject to
intrinsic loss (except Γ point), that is, the frequency range
between ωc and the frequency at Γ point.

Fig. 5. Propagation losses for two photonic bands of PhC
slabs with different dieletric constants of interlayer, R =
0.45a, h = 0.5a, d = 0.04a. (a) The second band for four
different values of εi; (b) propagation losses corresponding to
the second band; (c) the third band for four different values
of εi; (d) propagation losses corresponding to the third band.

In summary, we have performed systematic studies on
the influence of the pore surface interlayer on the optical
properties of 2D PhC slabs. The insertion of even thin
low-index interlayer significantly influences the TE-like
gap edges. What is more, besides offering more chance
to modify the dispersion properties of the PhC slab, the
additional interlayer in PhC slabs have a positive impact
on the losses.
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